
© 2017 IBM Corporation

Hyperledger Fabric v1:

Rethinking Permissioned Blockchains

Blockchain: du Bitcoin au Smart Contract
4 Mai 2017

Marko Vukolić, IBM Research - Zurich

May 4, 2017

© 2015 IBM Corporation© 2017 IBM Corporation

What is a Blockchain?

• A chain (sequence, typically a hash chain) of blocks of transactions

- Each block consists of a number of transactions

2

#234 #235 #236…#1
#0

Genesis
block

Node A Node E

Node B Node D

Node C

Node F

Ledger

Ledger

Ledger

Ledger

Ledger

Ledger

Consensus
protocol
ensures ledger
replicas are
identical*

datastructure

Network of
untrusted nodes

© 2015 IBM Corporation© 2017 IBM Corporation

This talk

How a set of seemingly simple functional requirements

implied blockchain design overhaul?

Hyperledger Fabric v1

3

© 2015 IBM Corporation© 2017 IBM Corporation4
https://www.hyperledger.org/

https://github.com/hyperledger

© 2015 IBM Corporation© 2017 IBM Corporation

Hyperledger Fabric – key requirements

 No native cryptocurrency

 Ability to code smart-contracts in general-purpose languages

 Modular/pluggable consensus

5

©2016 IBM Corporation

Blockchain Architecture
101

© 2015 IBM Corporation© 2017 IBM Corporation

Permissionless Blockchains

Step 1: Block “mining” (PoW Consensus)

Step 2: Block #237 propagation to the network (gossip)

Step 3: Block Validation / Smart Contract Execution (every miner)

• Validating transactions in the payload (executing smart contracts)

• Verifying hash of Block #237 < DIFFICULTY

7

#234… #235 #236

A =hash of block #236
B = Root hash of

Merkle tree of tx
hashes

C = nonce 1
D = nonce 2

Block #237

Transactions
(payload)

find nonces such that
hash(Block#237) =SHA256(A||B||C||D) < DIFFICULTY

#234… #235 #236

A =hash of block #236
B = Root hash of

Merkle tree of tx
hashes

C = nonce 1
D = nonce 2

Block #237

Transactions
(payload)

Miner of block #237

Miner of block #237

ORDER using Consensus EXECUTE
(input tx) (tx against smart contracts)

© 2015 IBM Corporation© 2017 IBM Corporation

Permissioned blockchains

 Nodes (participants) need a permission (and identity) to participate

in the blockchain network

 Motivation: business applications of blockchain and distributed

ledger technology (DLT)

─ Participant often need ability to identify other participants

─ Participants do not necessarily trust each other

 Examples: Chain, Kadena, Tendermint, Ripple, Symbiont, and…

Hyperledger Fabric

8

© 2015 IBM Corporation© 2017 IBM Corporation

Permissioned vs permissionless blockchains

 Membership management

─ Pemissioneless: none

─ Permissioned: node identities and membership need to be managed

 Consensus (system) performance

─ Permissionless (PoW consensus): high latency, low throughput

─ Permissioned (BFT consensus protocols): low latency, high throughput

9

Node A (leader)

Node B

Node C

Node D

Tx1

Tx2

Tx3

Tx4

Seq #24
View no

… #21 #22 #23 Tx1

Tx2

Tx3

Tx4

Seq #24
View noexample:

PBFT [Castro/Liskov02]

ORDER using Consensus EXECUTE
(input tx) (tx against smart contracts)

© 2015 IBM Corporation© 2017 IBM Corporation

What are the issues with

ORDER EXECUTE architecture

(with HLF requirements in mind)?

10

© 2015 IBM Corporation© 2017 IBM Corporation

Permissioned blockchain architecture issues

 Sequential execution of smart contracts

─ long execution latency blocks other smart contracts, hampers performance

─ DoS smart contracts (e.g., `while true { }`)

─ How permissioneless blockchains cope with it:

• Gas (paying for every step of computation)

• Tied to a cryptocurrency

 Non-determinism

─ Smart-contracts must be deterministic (otherwise – state forks)

─ How permissioneless blockchains cope with it:

• Enforcing determinism: Solidity DSL, Ethereum VM

• Cannot code smart-contracts in developers favorite general-purpose language

(Java, golang, etc)

 Confidentiality of execution: all nodes execute all smart contracts

 Inflexible consensus: Consensus protocols are hard-coded

11

© 2015 IBM Corporation© 2017 IBM Corporation

Hyperledger Fabric – key requirements

 No native cryptocurrency

 Ability to code smart-contracts in general-purpose languages

 Modular/pluggable consensus

12

Satisfying these requirements required
a complete overhaul of the permissioned blockchain design!

end result

Hyperledger Fabric v1

©2016 IBM Corporation

Hyperledger Fabric v1
Architecture

http://github.com/hyperledger/fabric

© 2015 IBM Corporation© 2017 IBM Corporation

HLF v1 architecture in one slide

 Existing blockchains’ architecture

ORDER using Consensus EXECUTE

(input tx) (tx against smart contracts)

 Hyperledger Fabric v1 architecture

EXECUTE ORDER using Consensus VALIDATE

(tx against smart contracts) (versioned state updates) (versions, execution attestations)

14

© 2015 IBM Corporation© 2017 IBM Corporation

Step #1: Execute first

 Goals

─ Paralelize execution (addresses sequential execution bottleneck)

─ Partition execution (addresses confidentiality of execution)

─ Remove non-determinism (prevent state forks due to non-determinism)

 Hyperledger Fabric v1 approach

─ A subset of nodes called endorsers executes chaincode**

• Endorsers produce and sign versioned state updates

─ Client library orchestrates collection of execution results

** HLF:chaincode ~ Ethereum:smart contract

15

© 2015 IBM Corporation© 2017 IBM Corporation

Hyperledger Fabric v1 Transaction flow

client (C)
endorsing
peer (EP1)

endorsing
peer (EP2)

endorsing
peer (EP3)

Simulate/Execute tx
Sign TX-ENDORSED

Collect “sufficient” no. of
TX-ENDORSED
Msgs into an endorsement

1

2

1 <PROPOSE, clientID, chaincodeID, txPayload, timestamp, clientSig>

2 <TX-ENDORSED, peerID, txID, chaincodeID, readset, writeset>

© 2015 IBM Corporation© 2017 IBM Corporation

Step 2: Order using Consensus

 Goal

─ Order versioned state-updates to prevent inconsistencies/double spending

─ Enforce consensus modularity

 Hyperledger Fabric v1 approach

─ Make consensus modular

─ Introduce ordering nodes (orderers)

─ Order after Execute prevents inconsistencies due to non-determinism

17

© 2015 IBM Corporation© 2017 IBM Corporation

Hyperledger Fabric v1 Transaction flow

client (C)
endorsing
peer (EP1)

endorsing
peer (EP2)

endorsing
peer (EP3)

O
rd

e
rin

g se
rvice (co

n
sen

su
s)

orderers

Simulate/Execute tx
Sign TX-ENDORSED

Collect “sufficient” no. of
TX-ENDORSED
Msgs into an endorsement

broadcast(endorsement)

1

2

4

3

1 <PROPOSE, clientID, chaincodeID, txPayload, timestamp, clientSig>

2 <TX-ENDORSED, peerID, txID, chaincodeID, readset, writeset>

3 BROADCAST(blob)

4 DELIVER(seqno,prevhash,block)

Total order semantics (HLF v1)

© 2015 IBM Corporation© 2017 IBM Corporation

Hyperledger Fabric v1 Transaction flow

client (C)
endorsing
peer (EP1)

endorsing
peer (EP2)

endorsing
peer (EP3)

O
rd

e
rin

g se
rvice (co

n
sen

su
s)

orderers

Simulate/Execute tx
Sign TX-ENDORSED

Collect “sufficient” no. of
TX-ENDORSED
Msgs into an endorsement

broadcast(endorsement)

1

2

4

3

1 <PROPOSE, clientID, chaincodeID, txPayload, timestamp, clientSig>

2 <TX-ENDORSED, peerID, txID, chaincodeID, readset, writeset>

3 BROADCAST(blob)

4 DELIVER(seqno,prevhash,block)

Total order semantics (HLF v1)

(committing)
peer (CP4)

(committing)
peer (CP5)

4

© 2015 IBM Corporation© 2017 IBM Corporation

HLF Consensus

 HLF v1 consensus (ordering service) implementations
─ Byzantine FT (SimpleBFT, variant of v0.6 PBFT, development in progress)

─ Crash FT (KAFKA, thin wrapper around Kafka/Zookeeper)

─ Centralized! (SOLO, mostly for development and testing)

 Many more to come
─ BFT-SMaRt (University of Lisbon), Honeybadger BFT (UIUC), XFT (IBM)

Perhaps also your favorite blockchain consensus?

20

© 2015 IBM Corporation© 2017 IBM Corporation

Step #3: Validate after Ordering

 Goal

─ Efficiently validate execution results from (potentially untrusted) endorsers

─ Validate “freshness” of state updates (prevents asset double-spending)

 Hyperledger Fabric v1 approach

─ All peers verify versions of state updates coming out of consensus

─ All peers validate endorsers’ signatures against endorsement policy

21

© 2015 IBM Corporation© 2017 IBM Corporation

Hyperledger Fabric v1 Transaction flow

client (C)
endorsing
peer (EP1)

endorsing
peer (EP2)

endorsing
peer (EP3)

O
rd

e
rin

g se
rvice (co

n
sen

su
s)

orderers

Simulate/Execute tx
Sign TX-ENDORSED

Collect “sufficient” no. of
TX-ENDORSED
Msgs into an endorsement
(to satisfy endorsement
Policy (EP))

1

2

4

3

1 <PROPOSE, clientID, chaincodeID, txPayload, timestamp, clientSig>

2 <TX-ENDORSED, peerID, txID, chaincodeID, readset, writeset>

3 BROADCAST(blob)

4 DELIVER(seqno,prevhash,block)

Total order semantics (HLF v1)

(committing)
peer (CP4)

(committing)
peer (CP5)

4

Validate(readset)
Validate(endorsement,

chaincodeID,
EP)

Validate(readset)
Validate(endorsement,

chaincodeID,
EP)

© 2015 IBM Corporation© 2017 IBM Corporation

HLF v1 Endorsement Policies

 Deterministic (!) programs used for validation

 Executed by all peers post-consensus

 Examples

─ K out of N chaincode endorsers need to endorse a tx

─ Alice OR (Bob AND Charlie) need to endorse a tx

 Cannot be specified by chaincode developers

 Can be parametrized by chaincode developers

23

© 2015 IBM Corporation© 2017 IBM Corporation

HLF v1 Endorsement Policies and Execution Flow

 Endorsement Policy can, in principle, implement arbitrary program

Hybrid execution model

EXECUTE ORDER VALIDATE approach of HLF v1

Can be used to split execution in two

EXECUTE (chaincode) can be non-deterministic

VALIDATE(endorsement policy) must be deterministic

24

© 2015 IBM Corporation© 2017 IBM Corporation

What about DoS, resource exhaustion?

 HLF v1 transaction flow is resilient* to non-determinism

 Hence, endorsers can apply local policies (non-deterministically) to

decide when to abandon the execution of chaincode

─ No need for gas/cryptocurrency!

* EXECUTEORDERVALIDATE:

non-deterministic tx are not guaranteed to be live

ORDEREXECUTE

non-deterministic tx are not guaranteed to be safe (forks can occur)

25

©2016 IBM Corporation

Thank You!

