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What is a Blockchain?

• A chain (sequence, typically a hash chain) of blocks of transactions

- Each block consists of a number of transactions
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This talk

How a set of seemingly simple functional requirements 

implied blockchain design overhaul?

Hyperledger Fabric v1
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https://www.hyperledger.org/

https://github.com/hyperledger
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Hyperledger Fabric – key requirements

 No native cryptocurrency

 Ability to code smart-contracts in general-purpose languages 

 Modular/pluggable consensus 
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Blockchain Architecture
101
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Permissionless Blockchains

Step 1: Block “mining” (PoW Consensus)

Step 2: Block #237 propagation to the network (gossip)

Step 3: Block Validation / Smart Contract Execution (every miner)

• Validating transactions in the payload (executing smart contracts)

• Verifying hash of Block #237 < DIFFICULTY
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Permissioned blockchains

 Nodes (participants) need a permission (and identity) to participate 

in the blockchain network

 Motivation: business applications of blockchain and distributed 

ledger technology (DLT)

─ Participant often need ability to identify other participants

─ Participants do not necessarily trust each other 

 Examples: Chain, Kadena, Tendermint, Ripple, Symbiont, and… 

Hyperledger Fabric
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Permissioned vs permissionless blockchains

 Membership management

─ Pemissioneless: none

─ Permissioned: node identities and membership need to be managed

 Consensus (system) performance

─ Permissionless (PoW consensus): high latency, low throughput

─ Permissioned (BFT consensus protocols): low latency, high throughput
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What are the issues with 

ORDER  EXECUTE architecture

(with HLF requirements in mind)?
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Permissioned blockchain architecture issues

 Sequential execution of smart contracts

─ long execution latency blocks other smart contracts, hampers performance

─ DoS smart contracts (e.g., `while true { }`)

─ How permissioneless blockchains cope with it:

• Gas (paying for every step of computation)

• Tied to a cryptocurrency

 Non-determinism

─ Smart-contracts must be deterministic (otherwise – state forks) 

─ How permissioneless blockchains cope with it:

• Enforcing determinism: Solidity DSL, Ethereum VM

• Cannot code smart-contracts in developers favorite general-purpose language 

(Java, golang, etc)

 Confidentiality of execution: all nodes execute all smart contracts

 Inflexible consensus: Consensus protocols are hard-coded
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Hyperledger Fabric – key requirements

 No native cryptocurrency

 Ability to code smart-contracts in general-purpose languages 

 Modular/pluggable consensus 
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Satisfying these requirements required 
a complete overhaul of the permissioned blockchain design!

end result

Hyperledger Fabric v1
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Hyperledger Fabric v1
Architecture

http://github.com/hyperledger/fabric
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HLF v1 architecture in one slide

 Existing blockchains’ architecture

ORDER using Consensus    EXECUTE

(input tx) (tx against smart contracts)

 Hyperledger Fabric v1 architecture

EXECUTE         ORDER using Consensus  VALIDATE

(tx against smart contracts)                    (versioned state updates) (versions, execution attestations)
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Step #1: Execute first

 Goals

─ Paralelize execution (addresses sequential execution bottleneck)

─ Partition execution (addresses confidentiality of execution) 

─ Remove non-determinism (prevent state forks due to non-determinism)

 Hyperledger Fabric v1 approach

─ A subset of nodes called endorsers executes chaincode**

• Endorsers produce and sign versioned state updates

─ Client library orchestrates collection of execution results

** HLF:chaincode ~ Ethereum:smart contract
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Hyperledger Fabric v1 Transaction flow
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Step 2: Order using Consensus

 Goal

─ Order versioned state-updates to prevent inconsistencies/double spending

─ Enforce consensus modularity

 Hyperledger Fabric v1 approach

─ Make consensus modular 

─ Introduce ordering nodes (orderers)

─ Order after Execute  prevents inconsistencies due to non-determinism
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Hyperledger Fabric v1 Transaction flow
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Hyperledger Fabric v1 Transaction flow
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HLF Consensus

 HLF v1 consensus (ordering service) implementations
─ Byzantine FT (SimpleBFT, variant of v0.6 PBFT, development in progress)

─ Crash FT (KAFKA, thin wrapper around Kafka/Zookeeper)

─ Centralized! (SOLO, mostly for development and testing)

 Many more to come
─ BFT-SMaRt (University of Lisbon), Honeybadger BFT (UIUC), XFT (IBM)

Perhaps also your favorite blockchain consensus?
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Step #3: Validate after Ordering

 Goal

─ Efficiently validate execution results from (potentially untrusted) endorsers

─ Validate “freshness” of state updates (prevents asset double-spending) 

 Hyperledger Fabric v1 approach

─ All peers verify versions of state updates coming out of consensus

─ All peers validate endorsers’ signatures against endorsement policy
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Hyperledger Fabric v1 Transaction flow
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HLF v1 Endorsement Policies

 Deterministic (!) programs used for validation 

 Executed by all peers post-consensus

 Examples

─ K out of N chaincode endorsers need to endorse a tx

─ Alice OR (Bob AND Charlie) need to endorse a tx

 Cannot be specified by chaincode developers

 Can be parametrized by chaincode developers
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HLF v1 Endorsement Policies and Execution Flow

 Endorsement Policy can, in principle, implement arbitrary program

Hybrid execution model

EXECUTE  ORDER  VALIDATE approach of HLF v1 

Can be used to split execution in two

EXECUTE (chaincode)  can be non-deterministic

VALIDATE(endorsement policy)  must be deterministic
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What about DoS, resource exhaustion?

 HLF v1 transaction flow is resilient* to non-determinism

 Hence, endorsers can apply local policies (non-deterministically) to 

decide when to abandon the execution of chaincode

─ No need for gas/cryptocurrency!

* EXECUTEORDERVALIDATE: 

non-deterministic tx are not guaranteed to be live

ORDEREXECUTE

non-deterministic tx are not guaranteed to be safe (forks can occur)
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Thank You!


